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Lecture 2:   
Asymptotic Analysis of Algorithms 

 

Goodrich & Tamassia, Chapter 4 
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•  Asymptotic Notation & Proving Bounds 

•  Algorithm Complexity vs Problem Complexity 
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The Importance of Analyzing Run Time 
<Adi Shamir <shamir@wisdom.weizmann.ac.il>>  

Thu, 26 Jul 2001 00:50:03 +0300 

Subject: New results on WEP (via Matt Blaze)  

WEP is the security protocol used in the widely deployed IEEE 802.11 wireless 
LAN's. This protocol received a lot of attention this year, and several groups of 
researchers have described a number of ways to bypass its security.  

Attached you will find a new paper which describes a truly practical direct attack on 
WEP's cryptography. It is an extremely powerful attack which can be applied even 
when WEP's RC4 stream cipher uses a 2048 bit secret key (its maximal size) and 
128 bit IV modifiers (as proposed in WEP2). The attacker can be a completely 
passive eavesdropper (i.e., he does not have to inject packets, monitor responses, or 
use accomplices) and thus his existence is essentially undetectable. It is a pure 
known-ciphertext attack (i.e., the attacker need not know or choose their 
corresponding plaintexts). After scanning several hundred thousand packets, the 
attacker can completely recover the secret key and thus decrypt all the 
ciphertexts. The running time of the attack grows linearly instead of 
exponentially with the key size, and thus it is negligible even for 2048 bit keys.  

Adi Shamir  
Source:  The Risks Digest (catless.ncl.ac.uk/Risks) 
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The Importance of Analyzing Run Time 
<Monty Solomon <monty@roscom.com>>  
Sat, 31 May 2003 10:22:56 -0400  
Denial of Service via Algorithmic Complexity Attacks  
Scott A. Crosby <scrosby@cs.rice.edu>  
Dan S. Wallach <dwallach@cs.rice.edu>  
Department of Computer Science, Rice University  
We present a new class of low-bandwidth denial of service attacks that exploit algorithmic 
deficiencies in many common applications' data structures. Frequently used data 
structures have ``average-case'' expected running time that's far more efficient than 
the worst case. For example, both binary trees and hash tables can degenerate to 
linked lists with carefully chosen input. We show how an attacker can effectively compute 
such input, and we demonstrate attacks against the hash table implementations in two 
versions of Perl, the Squid web proxy, and the Bro intrusion detection system. Using 
bandwidth less than a typical dialup modem, we can bring a dedicated Bro server to its 
knees; after six minutes of carefully chosen packets, our Bro server was dropping as much 
as 71% of its traffic and consuming all of its CPU. We show how modern universal hashing 
techniques can yield performance comparable to commonplace hash functions while being 
provably secure against these attacks.   

Source:  The Risks Digest (catless.ncl.ac.uk/Risks) 
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The Purpose of Asymptotic Analysis 

•  To estimate how long a program will run.  

•  To estimate the largest input that can reasonably be given to the program.  

•  To compare the efficiency of different algorithms.  

•  To help focus on the parts of code that are executed the largest number of times.  

•  To choose an algorithm for an application.     
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Running Time  

•  Most algorithms transform input 
objects into output objects. 

•  The running time of an algorithm 
typically grows with the input size n. 

•  Average case time is often difficult 
to determine. 

•  We focus on the worst case running 
time. 
–  Easier to analyze 

–  Reduces risk 
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Asymptotic Analysis 

•  In this context ‘asymptotic’ simply means ‘for large input 
size’. 

•  We don’t worry about small inputs – these will be easy. 

•  Rather we care about how run time will ultimately 
increase as the input size n gets larger and larger. 

•  This will tend to limit the maximum size of input the 
algorithm can handle. 
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Experimental Studies 

•  Write a program 
implementing the algorithm 

•  Run the program with 
inputs of varying size and 
composition 

•  Use a method like 
System.currentTimeMillis() to 
get an accurate measure of 
the actual running time 

•  Plot the results 
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Limitations of Experiments 

•  It is necessary to implement the algorithm, which may 
be difficult 

•  Results may not be indicative of the running time on 
other inputs not included in the experiment.  

•  In order to compare two algorithms, the same hardware 
and software environments must be used 
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Theoretical Analysis 

•  Uses a high-level description of the algorithm instead 
of an implementation 

•  Characterizes running time as a function of the input 
size, n. 

•  Takes into account all possible inputs 

•  Allows us to evaluate the speed of an algorithm 
independent of the hardware/software environment 
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Primitive Operations 

•  Basic computations 
performed by an algorithm 

•  Identifiable in pseudocode 

•  Largely independent from the 
programming language 

•  Assumed to take a constant 
amount of time 

•  Examples: 
–  Evaluating an 

expression 

–  Assigning a value 
to a variable 

–  Indexing into an 
array 

–  Calling a method 

–  Returning from a 
method 
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Counting Primitive Operations  

•  By inspecting the pseudocode, we can determine the 
maximum number of primitive operations executed by 
an algorithm, as a function of the input size 
Algorithm arrayMax(A, n) 

           # operations 

 currentMax ç A[0]          2 

 for i ç 1 to n - 1 do       2n 
  if A[i] > currentMax then   2(n -1) 

   currentMax ç A[i]   2(n -1) 
 return currentMax           1 
       
      Total  6n -1 
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Counting Primitive Operations  

•  By inspecting the pseudocode, we can determine the 
maximum number of primitive operations executed by 
an algorithm, as a function of the input size 
Algorithm arrayMax(A, n) 

           # operations 

 currentMax ç A[0]          2 

 for i ç 1 to n - 1 do       2n 
  if A[i] > currentMax then   2(n -1) 

   currentMax ç A[i]   2(n -1) 
 return currentMax           1 
       
      Total  6n -1 
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Estimating Running Time 

•  Algorithm arrayMax executes 6n - 1 primitive 
operations in the worst case.  Define: 
a  = Time taken by the fastest primitive operation 

b  = Time taken by the slowest primitive operation 

•  Let T(n) be worst-case time of arrayMax. Then 
  a (6n - 1) ≤ T(n) ≤ b(6n - 1) 

•  Hence, the running time T(n) is bounded by two 
linear functions 
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Growth Rate of Running Time 

•  Changing the hardware/ software environment  
–  Affects T(n) by a constant factor, but 

–  Does not qualitatively alter the growth rate of T(n) 

•  The linear growth rate of the running time T(n) is an 
intrinsic property of algorithm arrayMax 
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JAN 8, 2015 
End of Lecture 



Last Updated: 15-01-13 
EECS 2011 
Prof. J. Elder - 19 - 

Overview 
•  Motivation 

•  Definition of Running Time 

•  Classifying Running Time 

•  Asymptotic Notation & Proving Bounds 

•  Algorithm Complexity vs Problem Complexity 



Last Updated: 15-01-13 
EECS 2011 
Prof. J. Elder - 20 - 

Constant Factors 
•  On a logarithmic 

scale, the 
asymptotic growth 
rate is not affected 
by 
–  constant factors or  

–  lower-order terms 

•  Examples 
–  102n + 105 is a linear 

function 

–  105n2 + 108n is a 
quadratic function 
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Polynomial Growth 
•  Many algorithms that we encounter will have polynomial growth 

•  In a log-log chart, the asymptotic slope of the line corresponds to the 
order of the polynomial. 

Slope = 1 

Slope = 2 

Slope = 3 
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Seven Important Functions  
•  Seven functions that often appear in algorithm analysis: 

–  Constant ≈ 1 

–  Logarithmic ≈ log n 

–  Linear ≈ n 

–  N-Log-N ≈ n log n 

–  Quadratic ≈ n2 

–  Cubic ≈ n3 

–  Exponential ≈ 2n 

•  Although the detailed expression for run time may be 
complicated, most algorithms we will encounter can be 
mapped to one of these simple categories. 

  We will follow the convention that logn ≡ log2 n.
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Classifying Functions 

Note: The universe is estimated to contain ~1080 particles. 
 

T(n) 10 100 1,000 10,000 

log n   3 6 9 13 

n1/2 3 10 31 100 

10 100 1,000 10,000 

n log n 30 600 9,000 130,000 

n2 100 10,000 106 108 

n3 1,000 106 109 1012 

2n 1,024 1030 10300 103000 

n 

n 
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Let’s practice classifying functions 
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Which are more alike? 

n1000 n2 2n 
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Which are more alike? 

Polynomials 

n1000 n2 2n 



Last Updated: 15-01-13 
EECS 2011 
Prof. J. Elder - 27 - 

Which are more alike? 

1000n2 3n2 2n3 
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Which are more alike? 

Quadratic 

1000n2 3n2 2n3 



Last Updated: 15-01-13 
EECS 2011 
Prof. J. Elder - 29 - 

Overview 
•  Motivation 

•  Definition of Running Time 

•  Classifying Running Time 

•  Asymptotic Notation & Proving Bounds 

•  Algorithm Complexity vs Problem Complexity 



Last Updated: 15-01-13 
EECS 2011 
Prof. J. Elder - 30 - 

•  properties of logarithms: 
logb(xy) = logbx + logby 

logb (x/y) = logbx - logby 
logbxa = alogbx 

logba = logxa/logxb 

•  properties of exponentials: 
a(b+c) = aba c 
abc = (ab)c 
ab /ac = a(b-c) 
b = a logab 
bc = a c*logab 

Summations 
Logarithms and Exponents 
Existential and universal operators 
Proof techniques 

Some Math to Review 

  

∃g∀b Loves(b, g)

∀g∃b Loves(b, g)

•  existential and universal 
operators 
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  ∃g,∀b,loves(b,g)   ∀g,∃b,loves(b,g)

Understand Quantifiers!!! 

There is a girl who all 
the boys love. 

Every girl has a boy 
who loves her. 

Sam Mary 

Bob Beth 

John Marilyn 
Monro 

Fred Ann 

Sam Mary 

Bob Beth 

John Marilyn 
Monro 

Fred Ann 
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Asymptotic Notation 

•  The notation was first introduced by number theorist Paul Bachmann 
in 1894, in the second volume of his book Analytische Zahlentheorie 
("analytic number theory”).  

•  The notation was popularized in the work of number theorist 
Edmund Landau; hence it is sometimes called a Landau symbol.  

•  It was popularized in computer science by Donald Knuth, who 
(re)introduced the related Omega and Theta notations.  

•  Knuth also noted that the (then obscure) Omega notation had been 
introduced by Hardy and Littlewood under a slightly different 
meaning, and proposed the current definition.  

Source:  Wikipedia 

 (Ο,Ω,Θ and all of that)
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Asymptotic Notation 

•  Our primary use of this notation is to state and prove upper and 
lower asymptotic bounds on run time T(n). 

•  However the notation applies to the growth of arbitrary functions f(n). 

 (Ο,Ω,Θ and all of that)
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Big-Oh Notation  

•  Given functions f(n) and g(n), 
we say that f(n) is O(g(n)) if 
there are positive constants 
c and n0 such that 

 f(n) ≤ cg(n)  for n ≥ n0 

•  Example: 2n + 10 is O(n) 
–  2n + 10 ≤ cn 

–  (c - 2) n ≥ 10 

–  n ≥ 10/(c - 2) 

–  Pick c = 3 and n0 = 10 1 
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Definition of  “Big Oh” 

, 0 00 : , ( ) ( )c n n n f n cg n∃ > ∀ ≥ ≤

( )f n

( )g n

( )cg n

n

∈( ) ( ( ))f n O g n
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Big-Oh Example 

•  Example: the function 
n2 is not O(n) 
–  n2 ≤ cn 

–  n ≤ c 

–  The above inequality 
cannot be satisfied 
since c must be a 
constant  
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More Big-Oh Examples 
7n-2 

7n-2 is O(n) 
need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0 
this is true for c = 7 and n0 = 1 

n 3n3 + 20n2 + 5 
3n3 + 20n2 + 5 is O(n3) 
need c > 0 and n0 ≥ 1 such that 3n3 + 20n2 + 5 ≤ c•n3 for n ≥n0 
this is true for c = 5 and n0 = 20 

n 3 log n + 5 
3 log n + 5 is O(log n) 
need c > 0 and n0 ≥ 1 such that 3 log n + 5 ≤ c•log n for n ≥ n0 
this is true for c = 4 and n0 = 32 
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Big-Oh and Growth Rate 

•  The big-Oh notation gives an upper bound on the 
growth rate of a function 

•  The statement “f(n) is O(g(n))” means that the growth 
rate of f(n) is no more than the growth rate of g(n) 

•  We can use the big-Oh notation to rank functions 
according to their growth rate 

f(n) is O(g(n)) g(n) is O(f(n)) 

g(n) grows more Yes No 
f(n) grows more No Yes 
Same growth Yes Yes 
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Big-Oh Rules 

•  If f(n) is a polynomial of degree d, then f(n) is 
O(nd), i.e., 

1. Drop lower-order terms 

2. Drop constant factors 

•  We generally specify the tightest bound possible 
–  Say “2n is O(n)” instead of “2n is O(n2)” 

•  Use the simplest expression of the class 
–  Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)” 
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Asymptotic Algorithm Analysis 

•  The asymptotic analysis of an algorithm involves finding the running 
time in big-Oh notation 

•  To perform the asymptotic analysis 
–  We find the worst-case number of primitive operations executed as a 

function of the input size 

–  We express this function with big-Oh notation 

•  Example: 
–  We determine that algorithm arrayMax executes at most 6n - 1 

primitive operations 

–  We say that algorithm arrayMax “runs in O(n) time” 

•  Since constant factors and lower-order terms are eventually dropped 
anyhow, we can disregard them when counting primitive operations 
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Computing Prefix Averages 

•  We further illustrate asymptotic 
analysis with two algorithms for 
prefix averages 

•  The i-th prefix average of an array X 
is the average of the first (i + 1) 
elements of X: 

A[i] = (X[0] + X[1] + … + X[i])/(i+1) 

•  Computing the array A of prefix 
averages of another array X has 
applications to financial analysis, for 
example. 
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Prefix Averages (v1) 
The following algorithm computes prefix averages by applying the 
definition 

Algorithm prefixAverages1(X, n) 
 Input array X of n integers 

 Output array A of prefix averages of X  #operations 
  A ç new array of n integers         n 
 for i ç 0 to n - 1 do        n 
  s ç X[0]            n 
  for j ç 1 to i do          1 + 2 + …+ (n - 1) 
   s ç s + X[j]          1 + 2 + …+ (n - 1) 
  A[i] ç s / (i + 1)           n 
 return A                  1 
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Arithmetic Progression 

•  The running time of 
prefixAverages1 is 
O(1 + 2 + …+ n) 

•  The sum of the first n 
integers is n(n + 1) / 2 

–  There is a simple visual 
proof of this fact 

•  Thus, algorithm 
prefixAverages1 runs in 
O(n2) time  
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Prefix Averages (v2) 
The following algorithm computes prefix averages efficiently by keeping 
a running sum 

Algorithm prefixAverages2(X, n) 
 Input array X of n integers 

 Output array A of prefix averages of X      #operations 
 A ç new array of n integers     n 
 s ç 0         1 
 for i ç 0 to n - 1 do      n 
  s ç s + X[i]        n 
  A[i] ç s / (i + 1)       n 
 return A               1 

Algorithm prefixAverages2 runs in O(n) time  
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Relatives of Big-Oh 
Big-Omega 
n  f(n) is Ω(g(n)) if there is a constant c > 0  
 and an integer constant n0 ≥ 1 such that  
 f(n) ≥ c•g(n) for n ≥ n0 

 

Big-Theta 
n  f(n) is Θ(g(n)) if there are constants c1 > 0 

and c2 > 0 and an integer constant n0 ≥ 1 
such that c1•g(n) ≤ f(n) ≤ c2•g(n) for n ≥ n0 
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Intuition for Asymptotic Notation 
 Big-Oh 

n  f(n) is O(g(n)) if f(n) is asymptotically less than or 
equal to g(n) 

 big-Omega 

n  f(n) is Ω(g(n)) if f(n) is asymptotically greater than or 
equal to g(n) 

 big-Theta 

n  f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n) 

 
  
Note that f (n)∈Θ g(n)( ) ≡ f (n)∈O g(n)( )  and f (n)∈Ω g(n)( )( )
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Definition of  Theta 

f(n) is sandwiched between c1g(n) and c2g(n) 

f(n) = θ(g(n)) 

∃ > ∀ ≥ ≤ ≤, ,1 2 0 0 1 20 : , ( ) ( ) ( )c c n n n c g n f n c g n
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Time Complexity of an Algorithm 

•  O(n2): For any input size n ≥ n0, the algorithm takes 
no more than cn2 time on every input. 

•  Ω(n2): For any input size n ≥ n0, the algorithm takes at 
least cn2 time on at least one input. 

•  θ (n2): Do both. 

The time complexity of an algorithm is 
the largest time required on any input  
of size n. (Worst case analysis.) 
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What is the height of tallest person in the 
class? 

Bigger than this? 

Need to find  
only one person  
who is taller 

Need to look at  
every person 

Smaller than this? 
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Time Complexity of a Problem 

•  O(n2): Provide an algorithm that solves the problem in no more than 
this time.  
–  Remember: for every input, i.e. worst case analysis! 

•  Ω(n2): Prove that no algorithm can solve it faster. 
–  Remember:  only need one input that takes at least this long! 

•  θ (n2): Do both. 
  
 

The time complexity of a problem is  
the time complexity of the fastest 
algorithm that solves the problem. 
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